Inferno: An Over\/rew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

Introduction

Inferno is an operating system for creating and
supporting distributed services and other networked
applications. It was originally developed by the
Computing Science Research Centre of Bell Labs,
the R&D arm of Lucent Technologies and has been
substantially further developed by Vita Nuova and
Lucent.

Inferno encapsulates many years of Bell Labs
research in operating systems, languages, on-the-fly
compilers, graphics, security, networking and
portability. It is intended to be used in a variety of
network environments: home, office and mobile.

Inferno's definitive strength lies in its portability
and versatility across several dimensions:

@ Portability across processors: it currently runs on
Intel, SPARC, MIPS, PowerPC and ARM
(includingThumb). Work is currently underway on
SH3/4,

@ Portability across environments; it runs as a
native operating system on small devices, and also
as a user application under Windows, Linux and
UNIX. In all these environments Inferno
applications see an identical interface.

@ Distributed design: the identical environment is
established on each device, and each may import
the resources of the other platforms.

@ Dynamic adaptability: applications may, depending
on the hardware or other resources available, load
diferent program modules to perform a specific
function, for example, a video player application
might use any of several different decoder modules.

® Portable Applications: Inferno applications are
written in the type-safe language Limbo, whose
compiled representation is identical over all
platforms.

Portability Across Processors

The Inferno kernel and device drivers are all
written in C. The system comes with a cross
compiler suite that was developed at Bell Labs.
The compiler suite is extremely compact and yet
still manages to produce code that is comparable
in terms of size and efficiency with much larger
compiler packages. The compiler for a particular
architecture is typically around 12,000 lines of code.

Most of the common processor architectures are
supported by the compiler including: StrongARM,
x86, MIPS and PowerPC.

For ARM chips the compiler can generate either
ARM or Thumb code. The compiler suite
partitions the work between compiler and linker in
a novel way that places more emphasis on
optimization at the linking stage. In the case of the
ARM, the linker can link mixed ARM and Thumb
code into a single binary enabling the developer to
choose between efficiency of size or performance
for different components.

Porting Inferno to a new device based upon one of
the above architectures is relatively simple compared
to many other operating systems.The Inferno
kernel has been designed such that there is a well
defined interface between those parts of the system
that are 'platform specific' and those that are
'platform independent'. The interface is small.

The 'platform specific' elements are essentially the
interfaces (drivers) to the hardware. Device drivers
themselves consist of a platform-specific and
platform-independent part. The latter component
resides within the portable kernel code and provides
a uniform representation of the device to the
Inferno applications above. For example, the ‘draw-
device' provides a device dependent interface to
the display hardware. The non-portable part of the
driver is responsible for the control of the
physical device.

Having provided support for the hardware devices,
the compilation of the remainder of the kernel is
straightforward.

Inferno: An Overv{ew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

The block diagram below shows the relationship
between the various components of the Inferno
system and the physical hardware.

Shell |Browser| ide |debugger

Window Manager Applications

Non-window Manager Applications

Window Manager

Windows, Linux, FreeBSD, Port (x86, Sparc, Mips,
Solaris PowerPC, StrongARM)

Portability Across Environments

The traditional perception of an operating system is
that it will take control of the whole of a computing
device; this is true for most systems including
Windows, Linux and most RTOSs. More recently,
operating system developers have come to recognize
that, whilst there are obvious advantages in providing
new environments (particularly those that address
distributed application development), it is not practical
to replace existing operating systems in all cases.
Inferno addresses this problem by providing 'hosted'
versions of Inferno that make use of the services of
an existing operating system in order to support the
Inferno environment. As with all native Inferno
ports, hosted versions of Inferno provide an identical
environment to the application developer.

Not all operating systems can act as a host for
Inferno, a minimum level of functionality must be
provided. There is no Inferno port to DOS, for
example, but there are versions for Windows
95/98/2000/NT, Linux, Solaris, Irix, FreeBSD,

Plan 9 and others.

Where Inferno is hosted on top of an existing
operating system, one can consider Inferno to be
a portable application development environment
for the construction of distributed applications.

Distributed Design

One of the most difficult tasks facing programmers
today is the design and development of distributed
applications that will run across a heterogeneous
network of computing devices. The difficulty of
writing such applications is manifested in a number
of ways:

@ The development environments and
programming technologies vary greatly from one
device to another. Not all networks are IP, not all
devices are on the Internet.

@ Existing systems vary dramatically in the way
they present their resources. Some devices may
provide access through a specialized low level
protocol (a digital camera say), others through
remote procedure calls (RPC), and others through
high level protocols not originally intended for the
task (HTTP for example).

@ Differing policies for security and authentication
make claims of reliability hard to make.

Inferno addresses the first of these points by
providing the same environment everywhere within
the network, whether on an existing system in
hosted mode or native on a new device.

The second issue Inferno addresses through a
simple, unifying mechanism for the representation
of resources in the network. This mechanism is
based upon the import and export of a hierarchical
‘namespace’. A namespace looks like a hierarchical
filesystem, but it isn’t. The names within the
namespace can be accessed as if they were files
using the file operations ‘open’,‘close’, ‘read’ and
‘write’. Namespaces can be composed into more
complex hierarchies representing a collection of
resources. Applications that operate on these
namespaces are insulated from whether resources
are, local or remote.

The import and export of namespaces is underpinned
by a single, unifying file protocol called Styx.The Styx
protocol is used for access to all resources whether
local or remote. Styx can run over a variety of

Inferno: An Over\/rew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

transport protocols (TCP/IP, ATM) and insulates
Inferno applications from the type of network
being used. Styx can run over simple link-
protocols that connect small devices one to
another, for instance, a Lego IR link.

Finally, since access to all resources is through the
Styx protocol, Inferno has a single point at which
to focus security. As a consequence security is an
issue dealt with by the operating system and not
by individual applications, as is so often the case.

Namespace Example
This example describes a home network

Video Recorder and Digital Camera

Both of these devices could run Inferno as a native
operating system, however, to futher illustrate the
flexibility of Inferno we will assume that the Video
Recorder is running a version of Linux and the
Digital Camera an RTOS. Instead of replacing
these incumbent operating systems we assume that
a Styx protocol stack has been ported to each and
operates as a process inside each of the hosted
operating systems.

The diagram below illustrates this simple network,
detailing the namespace presented by each device.

that consists of the following devices:
/homenetwork /camera
STYX T 1
® Windows PC Iver HOSTED INFERNO ctl status photos
@ Digital Camera A s — ipeg git
® Video Recorder svx _— oo
@ PDA (Compag iPAQ, for example) ﬁ& _
The physical connection between the [] [] m
devices may be as follows:
ETHERNET
@® Wireless 802.11b network connecting (7 IMyPhotos
the iPAQ and the Windows PC i ﬁg .
® Ethernet network connecting the PC to 5 svx
i o0 NATIVE INFERNI
the Video Recorder ¢

@® USB connection from the PC to the
Digital Camera

Inferno is represented on these devices as follows:

Windows PC

Hosted version of Inferno providing an environment
for distributed application development. The
application that controls the other devices will run
from this machine though does not have to.

iPAQ

Native version of Inferno that controls the entire
device including a driver for a PCMCIA Wireless
card. The iPAQ contains a collection of useful PDA
style applications and also a simple JPEG viewer for
the user to look at their latest snaps.

The Application - Time Lapse Photography
The task we give ourselves is to write a distributed
application to do time lapse photography. The
photographs are to be taken at 10 second

intervals. After each photograph is taken it is to be
copied to aVCR for playback as a video. Each
image is to be stored for posterity in some local
store either on the hard disk or on the iPAQ.

Using other technologies this modestly complex
application would require some effort to write.
The programmer would have to deal with
potentially four different development
environments using different APIs and conventions
on each. Furthermore, it would be difficult to
insulate the application from where the resources
it is using are located. With Inferno, however, this
modest application could be implemented with
virtually no programming at all. How is that done?

Inferno: An Over\/rew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

What follows is a step-by-step example using commands but, obviously, graphics would be used in a
consumer interface.

Step One - mount the different name spaces

The ‘namespace’ for each device is first of all mounted under a mount point on the machine that is to run
the application (in our case the PC). The mount point is /n/remote. Each mount specifies the type of
network (TCP in this case), the IP address and the port. The network type can be left out, and in these
examples the port is left off, defaulting to ‘Styx’ of course! At each of the IP addresses and ports specified
there must be a process that serves the Styx protocol.

mount tcp!182.1.1.2 /n/remote/ver
mount tcp!182.1.1.3 /n/remote/camera

Step Two - bind the namespaces together
These name spaces are then bound into the name space that our application expects to see
/homenetwork.

bind -a /n/remote/vcr /homenetwork/ver
bind -a /n/remote/camera /homenetwork/camera
bind -a ‘#Uc:/MyPhotos '’homenetwork/MyPhotos

The last bind command binds part of the Windows files system into the /homenetwork namespace. The
convention is that the # introduces a reference to a local device, in this case the U specifies the host OS
file system and the remainder of the text indicates a path within the host file system.

Step Three - run the application from the PC
In fact lets write the application using a shell script.

echo ‘record single frame > /homenetwork/vcr/ctl
echo ‘picture type jpg * > [homenetwork/camera/ctl
while : ; do

echo ‘snap’ > /homenetwork/camera/ctl

photo= ‘cat /homenetwork/status

cp /homenetwork/camera/photos/$photo.jpg /homenetwork/MyPhotos
cp /homenetwork/camera/photos/$photo.jpg /homenetwork/vcr/data

echo ‘next frame ' > /homenetwork/vcr/ctl
echo ‘delete $photo ' > /homenetwork/camera/ctl
sleep 10

done

echo ‘record off ' > /homenetwork/vcr/ctl

echo ‘rewind ' > /homenetwork/vcr/ctl

This script initializes the camera and VCR and then it enters a loop that involves taking a photo, copying it
to the local store and the VCR and then pausing for 10 seconds before repeating the process again.

What you notice from this script is that the application operates on the namespace as if it were a
collection of files. As far as the application is concerned the namespace is indistinguishable from physical files

Inferno: An Over\/(ew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

on the local machine. What you will also notice is that commands are written as text into these files, for
example:

echo ‘snap’ > /homenetwork/camera/ctl

The commands do not have to be text but there are advantages:
e text is easy to read
e scripting can be used to implement programs

The camera and VCR need to interpret the commands sent and to interact with the physical hardware,
but this would be true no matter what scheme were used. The advantage of the Inferno architecture is
that the commands to control the device are separated from the protocol for communication.
Extensions to the command set to control the device do not require modifications to the Styx
communication protocol.

Step 4 - run the application from the IPAQ
This is a trivial change for Inferno. In fact the application remains exactly the same whilst the initial
mount and binds are modified as follows:

mount 182.1.1.2 /n/remote/vcr

mount 182.1.1.3 /n/remote/camera

mount 182.1.1.3 /n/remote/ipaq

bind -a /n/remote/vcr /homenetwork/vcr

bind -a /n/remote/camera /homenetwork/camera

bind -a /n/remote/ipag/MyPhotos /homenetwork/MyPhotos

As long as the application is presented with the same namespace it will operate on it regardless of where
the resources are located.

Step 5 - run on the iPAQ store on PC

Again there are no code changes at all in the application, it does not even have to be recompiled.

The namespace on the iPAQ will be composed as follows with the /MyPhotos directory coming from
the PC this time.

mount 182.1.1.2 /n/remote/vcr
mount 182.1.1.3 /n/remote/camera
mount 182.1.1.4 /n/remote/pc

bind -a /n/remote/vcr /homenetwork/vcr
bind -a /n/remote/camera /homenetwork/camera
bind -a /n/remote/pc/MyPhotos /homenetwork/MyPhotos

Inferno: An Over\/rew

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

Summary

Great simplicity is gained by applying the Inferno
namespace metaphor consistently and aggressively
to all resources in the network. In doing so many
things that in other systems would be hard to
achieve become trivial. Here are a further two,
short examples:

Remote debugging

The Inferno graphical debugger allows the
developer to debug a thread by opening the files
located in the directory /prog/<pid> where
<pid> is the process id for the thread. To debug a
process on another device is trivial, all the user
need do is mount the namespace of the remote
device and then bind the remote /prog directory
in place of the existing /prog directory. Here
are the commands to use:

mount 182.1.1.3 /n/remote
bind /n/remote/prog /prog

The graphical debugger is blissfully unaware of
whether the thread to debug is local or remote.

Porting Inferno

Porting any operating system can be a laborious
task as one incrementally adds support for the
various hardware devices. It is not until one
implements a driver for the screen,

keyboard and pointer can one begin to interact
with the device.

With Inferno one can reach this position much
quicker. Once the basic CPU and network
support has been completed other resources can
be imported over the network. For example,

you could import the screen, keyboard and pointer
device from another machine:

mount 182.1.1.3 /n/remote

bind /n/remote/dev/keyboard /dev/keboard
bind /n/remote/dev/draw /dev/draw

bind /n/remote/dev/pointer /dev/pointer

Having done so the Inferno kernel can run on the
new device while the user interacts with it using
the sceen, keyboard and mouse of any other device
running Inferno in hosted or native mode.

Portable Applications

Inferno applications are written using the Limbo
programming language. It is also possible to write
scripts using a programmers shell. The Limbo
compiler generates byte code (dis) which is
interpreted by the Inferno virtual machine.

The byte code is exactly the same on all Inferno
platforms and hence Limbo applications are
absolutely portable, no buts, no ifs, across all native
and hosted platforms.

The Limbo programming language is similar in many
respects to C. C programmers will find the transition
to Limbo a simple and painless process. And because
Limbo is type-safe and includes automatic garbage
collection the code is much easier to write, read and
maintain than many other languages.

Limbo is a concurrent programming language, that
is, it contains the constructs necessary to synchronize
a collection of co-operating processes or threads,
Inferno enables these threads to be executed on
different devices and to communicate using Styx or
the namespace metaphor. Not only does Limbo
support the creation of these distributed
applications it also provides the utilities to
graphically debug them.

Inferno: An Overv‘few

OPERATING SYSTEM FOR NETWORK APPLICATION DEVELOPMENT

Comparison with Other Systems
There are a large number of operating systems for small devices and a smaller, but still significant, number
of distribution protocols and an even smaller number of concurrent programming languages.

In this section Inferno is compared with products from each of these three categories. The products of
many other companies overlap with the application of Inferno, however, no other technology is so complete
in its scope. The table below summarizes the performance of other systems against a number of key
features of distributed computing technologies:

5
4 2 E =
= @) i [T}
258 %
g % = 4 g x 8 g =
s ==/ § 2 € B =
L = @ X O | LLi > (&)
VirtualMachine | O [J |O [O |O | O | O | L [e)
C/C++Language 1
St ¥ lo |0 |0 |o |0 D OO O O
Concurrent
Programming 0 O oO|j|Oo|[O|[O|O|O ol o
Language
Protocol for
Distribution o|o|0[d © O O[O O U
Native OS o|o|lo|o |00 b O O O
Hosted
Erglsirgnment of(o@ O oO|lO|O|O (0O |0
Embedded
e |o|ololololo|lolol|lo|Do
Royalty Free
Digtrigution o|oco|o|O|O | O] I U O
apecode I glo|lo|o|lo|lolo o] Ofo

1 Built-in modules and device drivers are written in C, but concurrent
applications are usually implemented in Limbo

2 |n practice embedded Java environments require significant resources.
The European STB standard which uses Java has a minimum specification
of 16Mb RAM.

3 Many embedded Linux offerings charge per-piece royalty fees for the OS
and do not give access to the full source code.

WWW.vitanuova.com vita nuova’

