Using Inferno for an Advanced Operating
Systems Course

Francisco J. Ballesteros
Sergio Arevalo
{nemo,sarevalo}@gsyc.inf.uc3m.es

January 12, 2001

Abstract

During spring 2000 we faced the question of how to design an Advanced
Operating Systems Course at Universidad Rey Juan Carlos of Madrid.
After browsing through the internet, we found that on most occasions, a
not-so-advanced operating system was being usually used to teach such
kind of course.

This brief note describes the experience of using an state-of-the-art
Operating System which includes advanced concepts to teach a second-
level course on Operating Systems.

1 Introduction

It is hard to teach operating systems because, in this field, theory and practice
mix probably more than in any other field. To make an example, it is feasible
(although not advisable! ) to teach theory of compiler construction without
making the students build a compiler. Of course, giving the size of a simple
compiler, it is good practice to organize a course so that students can learn
compiler theory and then build their own compiler. However, considering oper-
ating systems now, most concepts in the field are of interest only if they make
the resulting system perform well. This means that practice is so related to
theory that students are not likely to understand theory unless exposed to a
real system. Besides, to make things worse, it is not feasible within a single
course to assign the construction of an operating system as a student project.

At Universidad Rey Juan Carlos we have three courses on Operating Sys-
tems. The first two ones are part of a three years first cycle of Computer Science
Engineering. The last one is part of a two years second cycle of the same career.
During the second course on (Advanced) Operating Systems (AOS), at third
year, students learn about using and building advanced operating systems for
use in our networked world.

In the past few years, AOS was using unix (Linux) as the operating system
used for labs and assignments. Students learned how to use TCP and UDP using



a wrapper for sockets by building a chat application. Although this experience
proved fine in that students could learn how to apply concepts of distributed
systems theory to build a distributed application, we found that students were
mostly unable to use sockets due to its complex interface as well as they were
unable to think of how to structure a distributed system in a way different from
the traditional one: unix-plus-sockets.

Although one alternative could have been using the real socket interface
for this semester (so that at least students could learn how to use them), we
thought that it was most convenient to open their minds and let them see how
a novel way of structuring a distributed operating system could work. The aim
is to prepare them for building distributed applications and systems in the most
convenient way.

This semester students have been using Inferno [2] and Limbo [5] to build a
distributed mail service upon the Styx architecture [4]. By doing so, they have
seen how a distributed service can be structured in a simple way by inventing
abstractions well-suited for the application at hand. In particular, they were
surprised that by mapping parts of mail messages to files, and using a common
protocol (styx) to access files, their application could be built easily. Although
we do not know, we suspect that in the past they would have built something
very different (and much more complex) to implement the same application.

In what follows we try to describe my perception of this experience. Al-
though we feel it succeeded, it is really too early to know and what is said
should be considered to be just my opinion. we hope it is useful any way.

2 AOS with Linux and sockets

The first time students are exposed to operating systems is during their sec-
ond year Operating Systems (OS) course. This is a traditional course where
they learn basic OS concepts following a classical textbook [6]. This includes
concepts about system structure, process management, memory management,
file systems, and I/O. Assignments focus on using the shell as well as on using
system calls (e.g. build a shell).

Although the OS course has plenty of examples, many of which come from
Plan 9 and Inferno, after the OS course (before the AOS one), students have
used a centralized system and are not yet prepared for a networked world. At
this point they arrive to AOS.

The AOS course is devoted to teaching advanced operating systems con-
cepts. It revisits operating systems concepts, considering this time the network
as a central element. This means that the course is actually a mixture of a
distributed systems course and an operating systems course. Theory lectures
follow a classical textbook [7] (which we are going to change soon, by the way).
It includes concepts about structuring a distributed system, as well as com-
munication, synchronization, process management and file systems concepts for
distributed systems.

During last years, AOS featured assignments with sockets and Linux. Actu-



ally, students did not use sockets, but a wrapper for them instead—to simplify
their interface. Students built a chat application to learn distributed systems
concepts. Although the result was quite good, they were using mostly a central-
ized system together with a messaging mechanism. This means that after the
instructor taught them that “unique identifiers are important in a distributed
system”, they found later by themselves that “identifiers supplied by the real
operating system being used only have sense within a single node”. We would
prefer the assignments to re-enforce the concepts rather than to fight with them.

Being AOS an operating system course, it would be desirable to let students
build their own system. Admittedly this is not feasible due to the size of the
problem. The next best approximation would be to let students extend a system
already built. This is not feasible either with UNIX because the system (Linux)
is so complex that students would have problems doing so—not to talk about
the centralized design of the system. Even the next desirable approximation
(just using a distributed system) is infeasible with UNIX, because it is not a
distributed system.

At least, students should be able to see how a decent system works, how to
use it, and how to extend it. To fix this problem, we have introduced Inferno
as the operating system of choice for AOS.

3 AOS with Inferno

For this semester, students have been using Inferno

For the first time, they have been using a system built along the concepts
taught in theory, and not a centralized system. This is not to be underestimated.
To continue with the example used above, this time students have found that
things like QIDs and FIDs are important and follow the concepts taught in
theory lectures. And this happens as a “side-effect” of the assignment, which
is not centered on that concept! Of course, we have been using just a silly and
simple example, but this happen with many different concepts.

One good thing of using Inferno for the course is that students can feel how
they extend a real system. Since Inferno is about files serviced through Styx
channels, it is affordable for a student to extend the system by supplying a
given service through Styx. This year, the service chosen was a distributed mail
service. More information about the course can be found in a (spanish) web
page [1].

An important consequence of the Styx assignment, is that the student can
learn how implementing a system can be greatly simplified by choosing an ap-
propriate abstraction—which is mostly what AOS is about. The assignment is
described in an informal way, so that the student has to think about how to
map the service to the abstraction. It is of help that networking in Inferno is
really easy for the programmer. It takes several orders of magnitude less time to
teach how to use connections in Limbo than it takes to teach how to use sockets
on UNIX. Most of the time can be therefore devoted to learning the concept
considered, and not the mechanics of the system.



It could be said that implementing a Styx service is not preparing the student
for the “real world”; but we think this is not the case. My students were really
motivated by the fact that what they are doing as assignment is really similar
to what they will have to do in the industry when they start to implement
applications in the Internet. All in all, applications in the web are mostly
servicing files through a given protocols; most of the work to build an application
in this domain is to map the service into the abstraction. We sincerely think
that the reader would clearly perceive the isomorphism.

Considering now more practical aspects of the organization of the course,
Inferno has been of help here too. In previous years, the student would use
the Linux laboratory where several dozens of PCs are running Linux. This is
a physical room, with student home files serviced through NFS from a central
server. This year, the AOS laboratory still uses the Linux laboratory room,
but it has become virtual! Student home files are serviced through Styx from
an Inferno server running on the Linux file server. Given the portability of the
system, this means that almost any PC in the University can be considered part
of the Inferno laboratory: it has become distributed!

I have found that besides the PCs in the Linux room, some PCs from research
projects (used by students) as well as some home PCs (linked through slow
modem lines) have been used as part of this “Inferno laboratory”.

A funny incident in this respect is that initially, we planned to use a Windows
NT room for the Inferno laboratory. Due to problems “introduced” by the
system administrators, it was infeasible to do so. Amazingly enough, this was
not even a bit of a problem, because Inferno was ready to run on another
place—a Linux room.

Moreover, even though students are advised to install Linux or Plan 9 at
home as their base system, they no longer must do so. Some of them are using
Linux, some of them are using Windows; yet all of them can run the assignment
on the same system, Inferno.

Regarding the usage of the system at home, it would be better if the system
could be “open source”; and we have tried to choose open source systems to
teach our courses. Although a source license can be purchased quite cheaply
by students, it is still expensive enough for Spanish standards. In any case, the
binary-only Inferno distribution, distributed for free by Vitanuova suffices for
our purposes’.

To avoid misunderstandings regarding the system source, we have to say
that the license allows students to access temporarily the source code in the
system installation made for the course. One of my students made a minor fix
to the keyboard driver, to allow the use of a modifier key in X windows to type
characters accessed with “AltGr” in the Spanish keyboard. Although the fix
was not good enough to be distributed to others, this proves that the student
still can learn how the system works and how to enhance it.

Another beneficial “side-effect” of using Inferno has been using Acme as

)

IFor the “Operating Systems Design’
which is distributed open source.

course following the AOS one, we are using Plan 9,



the developing environment [3]. Most students came out of our courses using
XEmacs, Vi, the shell, and typical graphical user interfaces of Unix today. Acme
has shown them how a simple yet effective environment can be built with a small
fraction of the resources used by the more traditional environment. Whenever
a student was surprised about this and asked me, we suggested him to compare
the memory footprints of the applications involved, and also to compare the
apparent speed of several Inferno applications with similar ones written in Java.
We think they learned a lesson there.

4 Lessons learned

To summarize, we think students learn more by using a system built along the
lines taught to them during theory lectures. Using a hosted environment is
important in that the location of the labs is no longer relevant, and in that the
environment perceived by the student is always the same one. By using Styx,
they are learning a novel way of structuring a system while at the same time
they are learning how to build applications for the internet in today computing
platforms. By using something different from UNIX/Windows, they learn that
there are better ways to build Computing Systems.

As a suggestion, we miss a tutorial on using Styx to build a file server. We
may write one for the next semester, if none is available by that time.

In few words, although AOS is still unable to let students build their own
system, they are using and extending a distributed system for their first time.

References

[1] Francisco J. Ballesteros. Advanced Operating Systems Course Web site.
http://gsyc.escet.urjc.es/docencia/asignaturas/ampliacion’ssoo, 2000.

[2] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard
Trickey, and Phil Winterbottom. The Inferno Operating System. Bell Labs
Technical Journal, 2(1), 1997. Also in http://www.vitanuova.com/inferno.

[3] Rob Pike. Acme: A User Interface for Programmers. Plan 9 Programmer’s
manual, 3rd ed., vol. 2, 2000.

[4] Rob Pike and Dennis M. Ritchie. The Styx Architecture for Dis-
tributed Systems. Bell Labs Technical Journal, 4(2), 1999. Also in
http://www.vitanuova.com/inferno.

[5] Dennis M. Ritchie. The Limbo Programming Language.
http://www.vitanuova.com/inferno/papers/limbo.html, 1997.

[6] Andrew Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[7] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, 1995.



